Digital measurement of Impedance

Impedance - basics (remember)

 the total opposition of a device or circuit to the flow of an alternating current at given frequency;

Impedance value type

 An *ideal* value - the value of a circuit component that excludes the effects of its parasitics; (it has no frequency dependence);

• The *real* value - takes into consideration the effects of a component's parasitics (it is frequency dependent);

•The *measured* value - the value obtained with, and displayed by, the measurement instrument. It contains errors when compared to real value;

Component dependency factor (remember)

- frequency of test signal;
- level of test signal;
- temperature, etc.
- Frequency dependency of inductor

Component dependency factor (cont'd)

•Frequency dependency of capacitor

SRF > frequency of interest

Component dependency factor (cont'd)

•Frequency dependency

Component dependency factor (cont'd)

• Test signal level

Component dependency factor (cont'd)

- Other dependency factors
 - Example: capacitor

Equivalent circuit models (two elements)

Three-element equivalent circuit *

For high frequency (RF) measuring;

• capacitor serial equivalent circuit (Influence of parasitic inductance on capacitor);

• High and low impedance criteria

Reactance chart

• shows the impedance and admittance values of pure reactance at arbitrary frequencies.

Example: reactance of a 1nF capacitor is 160k Ω at 1kHz and 16 Ω at 10MHz. - A parasitic series resistance of 0.1 Ω can be ignored at 1kHz, but it yields a dissipation factor D=0.0063 at 10 MHz. - a parasitic inductance of 10nH can be ignored at 1 kHz and decreases measured capacitance by 4% at 10MHz.

At the intersection of 1nF line capacitor and the 10nH inductance line is self resonant frequency (SRF).

Reactance chart

- useful to estimate measurement accuracy for capacitance and inductance at given frequency.

- impedance measuring instruments measure Z=R + jX or Y=G + jB and $\underline{\Box}$ then compute C_s, C_p, L_s, L_p, D, Q, $\underline{\Box}$ |Z|, |Y|, etc.

- range and accuracy for the capacitance and inductance vary depending on frequency.

Measurement methods (ac)

- Bridge methods
 - classic bridge
 - Auto-balancing bridge
- •I-V methods
 - classic method
 - RF method for low impedance
 - RF method for high impedance
- Network analysis methods
- Resonant methods
 - analog Q meter
 - digital Q meter
- methods of conversion $Z_X \rightarrow T_X$ or $Z_x \rightarrow f_X$

Bridge classic method

Advantages

- High accuracy
- Wide frequency coverage by using different types of bridges [0-300MHz]
- Low cost

Disadvantages

- Needs to be manually
- Narrow frequency coverage with a single instrument

Applications

Standard laboratories

I-V classic methods

- in practice low loss transformer replace R (to prevent the effects of low value resistor in the circuit);

Advantages

- Grounded device measurement
- Suitable to probe-type test needs

Disadvantages

• Operating frequency range is limited by transformer 10kHz – 100MHz

Applications

Grounded devices measurement

$$Z_{X} = \frac{\underline{V}_{1}}{\underline{I}} = \frac{\underline{V}_{1}}{\underline{V}_{2}} R_{X}$$

RF I-V method

- are based on the same principle as the I-V method;
- uses an impedance-matched measurement circuit (50 Ω) and a precision coaxial test port

- R is known

Advantages

- High accuracy
- Wide impedance range
- High frequencies [1MHz 3GHz]

Disadvantages

• Operating frequency range is limited by transformer of probes

Applications

• RF component measurement

RFI-V method

High impedance type

Network analysis method

Network analysis method

 measures reflection coefficient (ratio of an incident signal to the reflected signal);

- uses directional coupler or bridge to detect the reflected signal;
- it is usable in the higher frequency range;

Advantages

- High accuracy for Z_{χ} closed to the characteristic impedance
- High frequency range [300kHz 500MHz]

Disadvantages

- requiring calibration at frequency changing
- Narrow impedance measurement range

Applications

RF component measurement

Resonant method (analog Q-meter)

the circuit is adjusted to resonance using a tuning capacitor (C)

• Q is measured directly using a voltmeter placed across the tuning capacitor

• L_X can be measured directly

• C_X and extended L_X can be measured indirectly using serial or parallel connections $\int C = C_V + C_X$

$$\begin{cases} L = L_{adj} + L_X \end{cases}$$

Advantages

- Good Q accuracy
- High frequency range [70kHz 50MHz]

Disadvantages

- requiring tuning to resonance
- Low impedance measurement accuracy

Applications

High Q devices measurement

Resonant method (digital Q-meter)

- digital Q-meter uses resonance of parallel circuit;
- Theoretical consideration

$$L\frac{d^{2}i(t)}{dt^{2}} + r\frac{di(t)}{dt} + \frac{i}{C} = 0$$

$$\omega_{0} = \frac{1}{\sqrt{LC}} \qquad \xi = \frac{r}{2}\sqrt{\frac{C}{L}} = \frac{r}{2\omega_{0}L} = \frac{1}{2Q}$$

$$i(t) = I_{0} \exp\left(-\frac{r}{2L}t\right) \cos\left(\omega_{0}\sqrt{1-\xi^{2}} \cdot t + \phi\right)$$

$$\frac{I(t_{2})}{I(t_{1})} = \frac{I_{0} \exp\left(-\frac{r}{2L}t_{2}\right)}{I_{0} \exp\left(-\frac{r}{2L}t_{1}\right)} = \frac{1}{K} \implies t_{2} - t_{1} = \frac{2L}{r} \ln K = \frac{2Q}{\omega_{0}} \ln K = nT_{0} = n \cdot \frac{2\pi}{\omega_{0}}$$

$$if \ Q > 3 \implies \xi < 1/6 \implies \omega \approx \omega_{0} \left(1 - \frac{1}{2}\xi^{2}\right) \approx \omega_{0} \implies n = \frac{Q}{\pi} \ln K$$

Κ

...

Resonant method (digital Q-meter)

practical consideration

Κ

10

Auto-balancing bridge method

- DUT = device under test
- uses a signal source, a voltmeter, and an ammeter that measure vectors (magnitude and phase angle)
- The input impedance of ammeter (virtually zero) does not affect measurements
- Distributed capacitance of the test cables does not affect measurements
- Guarding technique can be used to remove stray capacitance effects

Advantages

- High accuracy, wide ranges of impedance
- Wide frequency ranges [20Hz-110MHz]
- Grounded device measurement

Disadvantages

• Higher frequency ranges not available

Applications

- Generic component measurement
- Grounded device measurement (RLC-meter)

Auto-balancing bridge method (cont'd)

- for low frequency employs I-V converter (<100kHz) circuit and V-I converter with operational amplifier
- uses two vector voltmeters
- R_r, the range resistor, determines impedance measurement range;
- V_x and V_r can be measured with the same vector voltmeter (ratio detector);
- R_r has known value;

Auto-balancing bridge method (cont'd)

• the auto-balancing bridge section balances the range resistor current with the DUT current while maintaining a zero potential at the Low terminal;

• the null detector detects the unbalance current I_X - I_r and controls both the magnitude and phase angle of the OSC₂ output so that goes current to zero;

 circuit configuration cannot be used for high frequency >100kHz;

 to cover frequencies above 100 kHz the bridge employs null detector, 0°/90° phase detectors, and a vector Modulator;

Operation image of the auto-balancing bridge

Auto-balancing bridge method (cont'd)

Fixturing and Cabling

- auto-balancing bridge instrument is generally equipped with four BNC connectors, $\rm H_{cur},\, \rm H_{pot},\, L_{pot},$ and $\rm L_{cur}\,;$

Precision LCR Meter

Two-terminal configuration (2T)

• is the simplest method of connecting a DUT • contains error sources: lead inductances (L_L) , lead resistances (R_L) , stray capacitance (C_o) between two leads and contact resistances (R_C) between the test fixture's electrodes and the DUT;

• measurement ranges 100Ω - $10K\Omega$

EMI Course 6 – Digital measurement of impedances

Three-terminal configuration (3T)

- employs coaxial cables to reduce the effects of stray capacitance;
- accuracy is improved for the higher impedance values;
- measurement ranges 100Ω $10M\Omega$;

(a) Schematic diagram

Four-terminal configuration (4T)

• the signal current path and the voltage sensing leads are independents;

• reduce the effects of lead impedances (ωL_L and R_L) and contact resistances (R_c);

• introduces error at low impedance measurement due mutual coupling between the leading wires

• measurement ranges $10m\Omega - 10k\Omega$;

Five-terminal configuration (5T)

- employs four coaxial cables and all of the outer shielding conductors of the four cables are connected to the guard terminal
- does not resolve mutual coupling problem;
- measurement ranges $10m\Omega 10M\Omega$;

(a) Schematic diagram

Four-terminal pair configuration (8T)

- employs four coaxial cables to reduce the effects of stray capacitance;
- connects the outer shielding conductors to each other at the ends of the coaxial cables,
- isolate outer conductors at H_c , H_p , L_p , and L_c terminals
- solves the mutual coupling between the leads
 measurement ranges 1mΩ 10MΩ;

Bibliography

• Agilent Impedance Measurement Handbook 4'th Ed, (http:// education.tm.agilent.com);

• S. Ciochina, Masurari electrice si electronice, 1999;