Electronic Instrumentationfor Measurement

Introduction

Contents

- \Box **Introduction**
- \Box □ DAC – ADC converters
- □ Digital scope (oscilloscope)
- □ Digital voltmeter
- □ Z-meter
- \Box □ Spectrum analyzer
- □ Direct digital synthesizer

 $\overline{}$ **Measurement** = process of comparing the unknown quantity with an accepted standard quantity (u.m.);

Measuring system aims:

- □ to obtain information about a physical process;
- \Box to find appropriate ways of presenting that information to an observer or to other automatic systems;

Service Service Measuring system functions:

- data acquisition acquiring information about the object to be measured and converting into electrical measurement data;
- \Box □ data processing – selecting, processing or manipulating measured data (usually math operations);
- data distribution supplying of measured data to the target object (display for human, comm. interface for machine).

Measuring system functions:

$\overline{}$ Data acquisition:

- Sensor or transducer produces an electrical analog signal (obtain electrical information, $u(t)$, $i(t)$ in case of non-electrical data measurement – bijective function);
- \Box Signal conditioning: amplification, filtering, modulation, demodulation, non-linear operations of electrical signal;
- ❏ AD-converter: sample & hold, quantization, binary encoder;

L. Data distribution

- \Box DA converter (optional);
- **□** Signal conditioning (optional): the DAC output signal is adapted to actuator input: antialiasing filtering, amplification, filtering, non-linear operations;
- Actuator (effector) transforms the electrical signal into the desired non-electric form. Type of actuator functions: indicating (on display), storing (memory, CD, printer, etc), controlling (valve, heating element, electrical dive, etc);

- **T** Multi-channel measuring system
	- central processor and digital multiplexer (time division) fast data processing, slow ADC, DAC ;
	- \Box centralized processor and AD and DA-converters and analog multiplexer (time division) - fast data processing, ADC, DAC ;
	- system with frequency multiplexing (frequency division) telemetry;

8

П **Measuring system specifications**

- \Box measurement range $(0 - 100V, 0-2A,$ etc) - the input range between the specified maximum value (Full-scale FS) and minimum value (usually 0) where the system can be used for measurement;
- \Box □ *resolution* - the smallest change of input quantity - output detectable;
- \Box sensitivity - ratio between the output value variation (y) to the input variation (x) that causes that output change (linear / nonlinear function: saturation, clipping, dead zone);

F **Measuring system specifications (cont'd)**

- \Box bandwidth the input frequency span between frequencies $(f-f)$, where the system output has dropped to half from the corect value;
- a *accuracy* how precise the measured value is it (compared to the real value) - opposed to inaccuracy;
- input impedance (1MΩ||27pF);
- environmental operating range:
	- П ■ *supply voltage* (220V- 50Hz, 110V-60Hz, etc) ;
	- M the *environmental conditions:* operational temperature $(-10^{\circ}C)$ to 40° C), storage temperature (-20 $^{\circ}$ C to 85 $^{\circ}$ C), humidity (10% to 95%), altitude (0m to 6000m), etc.
	- П ■ other parameters : load (>20Ω);
- reliability of the system (failure rate *λ*(t) or the mean-timeto-failure MTTF);

Accuracy of measurement

Classical way–error of measurement (instant or maximum)

\n- ■ absolute error
$$
e_X = X_m - X_{ad}
$$
 where $\begin{cases} X_m \text{ measured value} \\ X_{ad} \text{ true value} \end{cases}$
\n- ■ relative error $\varepsilon_X = \frac{e_X}{X_{ad}} \cong \frac{X_m - X_{ad}}{X_m}$
\n- ■ accuracy $A_x = 1 - \varepsilon_X$
\n- ■ error propagation $e_Y = \sum_{k=1}^N \left| \frac{\partial F(X_1, X_2, \ldots, X_N)}{\partial X_k} \cdot e_{X_k} \right|$
\n- $\varepsilon_Y = \frac{1}{F(X_1, X_2, \ldots, X_N)} \cdot \sum_{k=1}^N \left| \frac{\partial F(X_1, X_2, \ldots, X_N)}{\partial X_k} \cdot X_k \cdot e_{X_k} \right|$
\n

L. **Accuracy of measurement**

Statistical way – Standard uncertainty ~ **standard deviation** of variable **x**

- $\textcolor{red}{\bullet}$ probability density function (pdf) $\textcolor{black}{p}_{\textcolor{black}{X}}\left(\textcolor{black}{x}\right)$
- **a** probability $\Pr(x_1 \leq X \leq x_2) = \int_{x_1}^{x_2} p_X(x) dx$ $Pr(x_1 \le X \le x_2) = \int_{x_1}^{x} p_X(x) dx$ *x* $x_1 \leq X \leq x_2$) = $\int_{x_1}^{x_2} p_X(x) dx$

$$
\Box \text{ statistical mean } \overline{X} = \mu = \int_{-\infty}^{+\infty} x \cdot p_{X}(x) \, dx
$$

$$
\Box \text{ statistical variance } \sigma^2 = \overline{(X - \mu)^2} = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot p_X(x) dx
$$

■ standard deviation

$$
\sigma = \sqrt{\sigma^2} = \sqrt{\overline{(X - \mu)}^2}
$$

Gauss distribution (normal)

$$
p_{X}\left(x\right) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}\right)
$$

Standard deviation: *σ*

Uniform distribution

$$
p_{X}(x) = \begin{cases} \frac{1}{2 \cdot X_{M}}, & x \in [\mu - X_{M}, \mu + X_{M}] \\ 0 & \text{otherwise} \end{cases}
$$

Standard deviation
$$
\sigma = \frac{X_{M}}{\sqrt{3}}
$$

$$
x \in (\mu - \sigma, \mu + \sigma) \Leftrightarrow P(x) = 58\%
$$

Practical measurement accuracy

Evaluation from N samples (ergodic process supposition)

 Mean1 $\frac{1}{\sqrt{N}}$ $\sum_{n=1}^{\infty}$ $X = \mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ $=\mu = \frac{1}{N} \sum_{n=1}^{N}$

<u>error in the n-th measurement $e_{X_{-n}} = x_n - \overline{X}$ $e_{X_{-n}} = \frac{e_{X_{-n}}}{\overline{X}}$ </u>

□ deviation of in the n-*th* measurement $\varepsilon_{X_{-n}} = -$

- **Average deviation** $\sum_{n=1}^{\infty} (x_k - \overline{X})$ 1 *N N* X_N *N* $\sum_{k=1}^{N}$ $D_{X_{N}} = \frac{1}{N} \sum_{k} (x_{k} - X_{k})$ $N \sum_{k=1}^{\infty}$ \cdots $k=$ $=\frac{1}{N}\sum_{k}(x_{k}$ $e_{X_{-n}} = x_n - X$
 $-\sum_{k=1}^{N} (x_k - \overline{X})$
 $P_{X_{-n}} = 1 - \frac{|x_n - \overline{X}|}{\overline{X}}$
- **□ precision** of the n-*th* measurement

Practical measurement accuracy

- **Standard deviation** (N>30)
- **Standard deviation** (N<30)

$$
\sigma_{X} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (x_k - \mu)^2}
$$

$$
\sigma_{X} = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N} (x_k - \mu)^2}
$$

Uncertainties propagation

$$
Y = F(X_1, X_2, ..., X_K)
$$

$$
\boldsymbol{\sigma}_{Y} = \sqrt{\sum_{k=1}^{K} \left(\frac{\partial F\left(X_{1}, X_{2},..., X_{K}\right)}{\partial X_{k}} \right)^{2} \cdot \boldsymbol{\sigma}_{X_{k}}^{2}}
$$

Least mean squares linear fitting

Simplest case: one measurand is linear function of single independent variable

$\mathcal{L}_{\mathcal{A}}$ **Least mean squares linear fitting**

Minimize mean square error (MSE)

$$
MSE = \sigma_y^2 = \frac{1}{N} \sum_{n=1}^{N} ((m \cdot x_n + b) - y_n)^2
$$

$$
MSE = 1/N \sum_{n=1}^{N} (m^2 x_n^2 + b^2 + 2m b x_n + y_n^2 - 2 y_n (m \cdot x_n + b))
$$

Set derivates equal to zero

$$
\begin{cases}\n\frac{\partial \sigma_y^2}{\partial m} = 0 & \Rightarrow \quad \begin{cases}\nm \cdot S_{xx} + b \cdot S_x = S_{xy} \\
m \cdot S_x + b \cdot N = S_y\n\end{cases} \\
S_{xx} = \sum_{n=1}^N x_n \cdot x_n & ; \quad S_x = \sum_{n=1}^N x_n \\
\text{where} \\
S_{xy} = \sum_{n=1}^N x_n \cdot y_n & ; \quad S_y = \sum_{n=1}^N y_n \quad ; \quad \sigma_x^2 = \frac{1}{N} S_{xx} - \frac{1}{N^2} S_x^2\n\end{cases}
$$

L. **Least mean squares linear fitting**

Solutions:
$$
b = \frac{1}{\sigma_x^2} (S_x \cdot S_{xy} - S_y \cdot S_{xx})
$$
 ; $m = \frac{1}{\sigma_x^2} (S_x \cdot S_y - N \cdot S_{xy})$

 $\Box\;\;R_{xy}(0) -$ cross correlogram function evaluated at t =0

$$
R_{xy}(0) = \frac{1}{N} \sum_{n=1}^{N} x_n y_n = \frac{1}{N} S_{xy}
$$

□ *r* - correlation coefficient for the LMS fit $\overline{(0)-XY}$ \overline{N} \over $(0) - \bar{X} \bar{Y}$ $\frac{1}{N} S_{xy} - \frac{1}{N^2}$ $0 \leq r \leq 1$ $\frac{xy}{y}$ $\frac{y - \lambda Y}{y - \lambda y}$ $\frac{y - xy}{y - \lambda y}$ $X \sim Y$ $S_{xy} - \frac{1}{2L^2} S_x S_y$ $R_{xy}(0) - XY = \frac{\overline{N}}{N} \partial_{xy} - \frac{\overline{N}}{N^2} \partial_{x}$ $\frac{I}{I} = \frac{N}{I}$ $\frac{xy}{N}$ $r = \frac{r}{r} = \frac{r}{r} = \frac{r}{r} = 0.05 r$ $\sigma_{\scriptscriptstyle X} \sigma_{\scriptscriptstyle Y} \qquad \qquad \sigma_{\scriptscriptstyle X} \sigma_{\scriptscriptstyle Y}$ $\triangleq \frac{R_{xy}(0)-XY}{\sigma_X \sigma_Y} = \frac{N^2}{\sigma_X \sigma_Y} \frac{N^2}{\sigma_X \sigma_Y}$ $0 \le r \le$

 $r = 1$ - perfect fit

 r^2 - coefficient of determination of the fit

- \mathbb{R}^n SI (System International Unit)
	- \Box International Standard
	- □ ……

Fundamentals

- $\overline{\mathcal{A}}$ Supplementary bibliography
	- □ S. Rabinovich, Measurement Errors and Uncertainties Theory and \Box Practice 3rd ed. – 2005;
	- □ P.P.L. Regtien, Electronic instrumentation, second edition 2005;